Expression of MRP1 and GSTP1-1 modulate the acute cellular response to treatment with the chemopreventive isothiocyanate, sulforaphane.
نویسندگان
چکیده
A major component of the anticarcinogenic activity of the dietary chemopreventive agent sulforaphane (SFN) is attributed to its ability to induce expression of phase II detoxification genes containing the antioxidant response element (ARE) within their promoters. Because SFN is a reactive electrophile--readily forming conjugates with glutathione (GSH)--we asked whether expression of glutathione S-transferase (GST) P1-1 and the GSH conjugate efflux pump, multidrug resistance or resistance-associated protein (MRP) 1, would significantly modify the cellular response to SFN exposure. This was investigated using GST- and MRP1-poor parental MCF7 cells and transgenic derivatives expressing GSTP1-1 and/or MRP1. Compared with parental cells, expression of GSTP1-1 alone enhanced the rate of intracellular accumulation of SFN and its glutathione conjugate, SFN-SG--an effect that was associated with increased ARE-containing reporter gene induction. Expression of MRP1 greatly reduced SFN/SFN-SG accumulation and resulted in significant attenuation of SFN-mediated induction of ARE-containing reporter and endogenous gene expression. Coexpression of GSTP1-1 with MRP1 further reduced the level of induction. Depletion of GSH prior to SFN treatment or the substitution of tert-butylhydroquinone for SFN abolished the effects of MRP1/GSTP1-1 on ARE-containing gene induction-indicating that these effects are GSH dependent. Lastly, analysis of NF-E2-related factor 2 (Nrf2)--a transcription factor operating via binding to the ARE--showed that the increased levels of Nrf2 following SFN treatment were considerably less sustained in MRP1-expressing, especially those coexpressing GSTP1-1, than in MRP1-poor cells. These results suggest that the regulating effects of MRP1 and GSTP1-1 expression on SFN-dependent induction of phase II genes are ultimately mediated by altering nuclear Nrf2 levels.
منابع مشابه
RNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line
Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...
متن کاملHaplotype-environment interactions that regulate the human glutathione S-transferase P1 promoter.
Phase II detoxification of carcinogens is reported to mediate some of the anticarcinogenesis effects of candidate chemopreventive agents. We explored the interaction between sequence variation in the GSTP1 gene promoter and candidate chemopreventive exposure in regulating human GSTP1 expression. Polymorphisms along 1.8 kb of the GSTP1 promoter were identified in leukocytes [peripheral blood mon...
متن کاملEffects of iron and cupper ions on sulforaphane content and peroxidase activity in Lepidium draba seedlings
Sulforaphane (SFN) is an isothiocyanate which is produced through glucoraphanin hydrolysis via myrosinase activity. In the present study, SFN content and peroxidase activity has been assessed in treated Lepidium draba seedlings with different concentrations of iron and copper during 8 and 16 hours treatment. The results showed that the SFN content drastically elevated at treatment with...
متن کاملAllyl Isothiocyanate Increases MRP1 Function and Expression in a Human Bronchial Epithelial Cell Line
Multidrug resistance-associated protein 1 (MRP1), a member of the ATP-binding cassette (ABC) superfamily of transporters, plays an important role in normal lung physiology by protecting cells against oxidative stress and toxic xenobiotics. The present study investigates the effects of allyl isothiocyanate (AITC) on MRP1 mRNA and MRP1 protein expression and transporter activity in the immortalis...
متن کاملInteractions between drugs and sulforaphane modulate the drug metabolism enzymatic system.
BACKGROUND Sulforaphane (SFN) is a potent chemopreventive agent, which is widely consumed in diet or as a diet supplement. It modulates the enzymes of II and III metabolism phase. In this paper, the influence of SFN and three commonly consumed drugs: furosemide, verapamil and ketoprofen on II and III metabolisms phase enzymes was studied. We have also investigated if the interactions between SF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2008